A novel approach combining self-organizing map and parallel factor analysis for monitoring water quality of watersheds under non-point source pollution
نویسندگان
چکیده
High content of organic matter in the downstream of watersheds underscored the severity of non-point source (NPS) pollution. The major objectives of this study were to characterize and quantify dissolved organic matter (DOM) in watersheds affected by NPS pollution, and to apply self-organizing map (SOM) and parallel factor analysis (PARAFAC) to assess fluorescence properties as proxy indicators for NPS pollution and labor-intensive routine water quality indicators. Water from upstreams and downstreams was sampled to measure dissolved organic carbon (DOC) concentrations and excitation-emission matrix (EEM). Five fluorescence components were modeled with PARAFAC. The regression analysis between PARAFAC intensities (Fmax) and raw EEM measurements indicated that several raw fluorescence measurements at target excitation-emission wavelength region could provide similar DOM information to massive EEM measurements combined with PARAFAC. Regression analysis between DOC concentration and raw EEM measurements suggested that some regions in raw EEM could be used as surrogates for labor-intensive routine indicators. SOM can be used to visualize the occurrence of pollution. Relationship between DOC concentration and PARAFAC components analyzed with SOM suggested that PARAFAC component 2 might be the major part of bulk DOC and could be recognized as a proxy indicator to predict the DOC concentration.
منابع مشابه
Application of a Self-Organizing Map for Clustering the Groundwater Quality in Kerman Province and Assessment its Suitability for Drinking and Irrigation Purposes
Evaluation of groundwater hydro chemical characteristics is necessary for planning and water resources management in terms of quality. In the present study, a self-organizing map (SOM) clustering technique was used to recognize the homogeneous clusters of hydro chemical parameters in water resources (including well, spring and qanat) of Kerman province; then, the quality classification of groun...
متن کاملModeling of Non-Point Source Pollution by Long-Term Hydrologic Impact Assessment (L-THIA) (Case Study: Zayandehrood Watershed) in 2015
Background & Aims of the Study: In this research, Long-Term Hydrologic Impact Assessment model is selected for simulation of runoff and NPS pollution. The aim of this study is modeling of non-point source pollution by L-THIA model in Zayandehrood watershed in 2015. Materials & Methods: In this study, analytical survey and investigation of references in the context of libr...
متن کاملNGTSOM: A Novel Data Clustering Algorithm Based on Game Theoretic and Self- Organizing Map
Identifying clusters is an important aspect of data analysis. This paper proposes a noveldata clustering algorithm to increase the clustering accuracy. A novel game theoretic self-organizingmap (NGTSOM ) and neural gas (NG) are used in combination with Competitive Hebbian Learning(CHL) to improve the quality of the map and provide a better vector quantization (VQ) for clusteringdata. Different ...
متن کاملMonthly runoff forecasting by means of artificial neural networks (ANNs)
Over the last decade or so, artificial neural networks (ANNs) have become one of the most promising tools formodelling hydrological processes such as rainfall runoff processes. However, the employment of a single model doesnot seem to be an appropriate approach for modelling such a complex, nonlinear, and discontinuous process thatvaries in space and time. For this reason, this study aims at de...
متن کاملLandscape planning for agricultural non-point source pollution reduction. II. Balancing watershed size, number of watersheds, and implementation effort.
Agricultural non-point source (NPS) pollution poses a severe threat to water quality and aquatic ecosystems. In response, tremendous efforts have been directed toward reducing these pollution inputs by implementing agricultural conservation practices. Although conservation practices reduce pollution inputs from individual fields, scaling pollution control benefits up to the watershed level (i.e...
متن کامل